Service by

Home Journal Issues Guide for Authors Editorial Board About Journal Aims & Scope


Review Article Open Access


The role of microRNAs in autism

Mutlu Karakuş, Alperhan Çebi.

Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental psychopathology. It’s etiology is not clear yet. ASD is characterized by restrictive interests and behaviour paterns, deficiencies in social and communication areas. It seems 1/68 ratio according to the last epidomiological data. Despite that it seem frequently in society, promising results in medical treatment has not been until today.
MicroRNAs evolutionary conversed member of non-coding RNA familiy and consists 22 nucleotides in. miRNAs are important element of the genetic regulation. Several studies have been identified consistent dsyregulation on some miRNAs in ASD. If we accept this as a new epifenom for this disorder these studies can be considered to be a new potential biomarker candidates. High reliability of the ASD gene targeting miRNAs are likely to provide new insights to the mechanisms underlying ASD. It can also help design appropriate miRNA therapeutics for such an understanding autism.

Key words: autism, miRNA, etiology



MikroRNAların otizmdeki rolü

Özet
Otizm spektrum bozukluğu etiyolojisi tam olarak açıklığa kavuşturulamamış nörogelişimsel bir psikopatolojidir. Etkilediği bireylerde sosyal ve iletişimsel alanda yeteresizlik, kısıtlayıcı ilgili ve davranış örüntüsü ile karakterizedir. En son epidemiyolojik veriler 1/68 oranında görüldüğü bildirmektedir. Toplumda sık görülmesine rağmen maalesef tanımlandığı günden bu güne kadar medikal tedavide yüz güldürücü sonuçlar bildirilmemiştir.
MicroRNA’lar(miRNA) evrimsel olarak korunmuş non-coding RNA ailesindendir ve yaklaşık 22 nukleotidten oluşmaktadır. miRNA’lar genetik regulasyonun önemli bir elemanıdır. Birkaç miRNA’nın bağımsız çalışmalarla otizmde tutarlı disregülasyonu olduğu tespit edilmiştir. Bunun hastalığın bir epifenomeni olarak kabul edersek bu çalışmalar sonucunda bu bozukluk için miRNA’ların yeni potansiyel biyomarkır adayları olabileceği düşünülebilir. Güvenilirliği yüksek ASD genlerini hedefleyen miRNA'lar sistematik karakterizasyonu otizmin altında yatan mekanizmalara yeni bakış açıları sağlayacağı ise muhtemeldir. Böyle bir anlayış otizm için uygun miRNA terapötikleri tasarımına da yardımcı olabilir.

Anahtar Kelimeler: otizm, miRNA, etiyoloji


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Mutlu Karakuş
Articles by Alperhan Çebi
on Google
on Google Scholar
Article Statistics
 Viewed: 679
Downloaded: 152
Cited: 0


REFERENCES
1. Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. Sci China Life Sci. 2015 Oct;58(10):933- 45. PubMed [Pubmed]   
2. Singh JS. Defining, Counting, Contesting, Changes in Diagnosis, Prevalence, and Advocacy. In: Singh JS, editor. Multiple Autisms. Spectrums of Advocacy and Genomic Science: University of Minnesota Press; 2016. p. 21-36.
3. Hens K, Peeters H, Dierickx K. The ethics of complexity. Genetics and autism, a literature review. Am J Med Genet B Neuropsychiatr Genet. 2016 Feb 12. PubMed [Pubmed]   
4. Banerjee-Basu S, Larsen E, Muend S. Common microRNAs Target Established ASD Genes. Front Neurol. 2014;5:205. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
5. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008 Jul;9(3):153-61. PubMed [Pubmed]   
6. Nampoothiri SS, Rajanikant GK. Decoding the ubiquitous role of microRNAs in neurogenesis. Mol Neurobiol. 2016 Feb 24. PubMed [Pubmed]   
7. Santulli G. A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics. Microrna: Basic Science: From Molecular Biology to Clinical Practice. 2015;887:1-14. PubMed [Pubmed]    English.
8. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007;8(2):R27. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
9. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res. 2010 Dec;124(1- 3):183-91. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
10. Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neurosci Biobehav Rev. 2016 Jan;60:121-38. PubMed [Pubmed]   
11. Ruberti F, Barbato, C. . MicroRNA Biology and Function in the Nervous System. In: Ruberti F, Barbato, C. , editor. Mapping of Nervous System Diseases via MicroRNAs: CRC Press is an imprint of Taylor & Francis Group, an Informa business; 2016. p. 3-13.
12. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005 May 6;308(5723):833-8. PubMed [Pubmed]   
13. Piscopo P, Albani D, Castellano AE, Forloni G, Confaloni A. Frontotemporal Lobar Degeneration and MicroRNAs. Front Aging Neurosci. 2016;8:17. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
14. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9093-8. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
15. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20382-7. PubMed [Pubmed]    Pubmed Central [PMC Free Fulltext]   
16. Kumari A, Singh P, Baghel MS, Thakur M. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiology & Behavior. 2016;158:34-42. [DOI via Crossref]    [Pubmed]   
17. Devanna P, Vernes SC. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Scientific reports. 2014;4.
18. Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Molecular Autism. 2015 Aug 14;6. PubMed [Pubmed]    English.
19. Choi SY, Pang KF, Kim JY, Ryu JR, Kang H, Liu ZD, et al. Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Mol Brain. 2015 Nov 16;8. PubMed [Pubmed]    WOS:000364778400001. English.
20. Ching AS, Ahmad-Annuar A. A Perspective on the Role of microRNA-128 Regulation in Mental and Behavioral Disorders. Frontiers in Cellular Neuroscience. 2015 Dec 14;9. PubMed [Pubmed]    English.
21. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013 May;218(3):817-31. PubMed [Pubmed]    English.
22. Guven-Ozkan T, Busto GU, Schutte SS, Cervantes-Sandoval I, O'Dowd DK, Davis RL. MiR-980 Is a Memory Suppressor MicroRNA that Regulates the Autism-Susceptibility Gene A2bp1. Cell reports. 2016;14(7):1698-709. [DOI via Crossref]    [Pubmed]   
23. Popov NT, Madjirova NP, Minkov IN, Vachev TI. Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnology & Biotechnological Equipment. 2012;26(6):3385-8. [DOI via Crossref]   
24. Anitha A, Thanseem I. microRNA and Autism. microRNA: Medical Evidence: Springer; 2015. p. 71-83.
25. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, et al. Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. Plos One. 2015;10(6):e0129052.
26. Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, et al. Serum microRNA profiles in children with autism. Molecular autism. 2014;5(1):1.
27. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain research. 2010;1338:89-99. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
28. Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, et al. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Molecular autism. 2016;7(1):1. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
29. Loohuis NO, Kole K, Glennon J, Karel P, Van der Borg G, Van Gemert Y, et al. Elevated microRNA-181c and microRNA- 30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiology of disease. 2015;80:42-53. [DOI via Crossref]    [Pubmed]   
30. Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Molecular autism. 2015;6(1):1. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
31. Marrale M, Albanese NN, Calì F, Romano V. Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation. Plos One. 2014;9(3):e90947.
32. Toma C, Torrico B, Hervás A, Salgado M, Rueda I, ValdésMas R, et al. Common and rare variants of microRNA genes in autism spectrum disorders. The World Journal of Biological Psychiatry. 2015;16(6):376-86. [DOI via Crossref]    [Pubmed]   

How to Cite this Article
Pubmed Style

Karakus M, Cebi A. The role of microRNAs in autism. TAF Prev Med Bull. 2016; 15(6): 569-574. doi:10.5455/pmb.1-1463059546



Web Style

Karakus M, Cebi A. The role of microRNAs in autism. www.scopemed.org/?mno=228784 [Access: September 19, 2017]. doi:10.5455/pmb.1-1463059546



AMA (American Medical Association) Style

Karakus M, Cebi A. The role of microRNAs in autism. TAF Prev Med Bull. 2016; 15(6): 569-574. doi:10.5455/pmb.1-1463059546



Vancouver/ICMJE Style

Karakus M, Cebi A. The role of microRNAs in autism. TAF Prev Med Bull. (2016), [cited September 19, 2017]; 15(6): 569-574. doi:10.5455/pmb.1-1463059546



Harvard Style

Karakus, M. & Cebi, A. (2016) The role of microRNAs in autism. TAF Prev Med Bull, 15 (6), 569-574. doi:10.5455/pmb.1-1463059546



Turabian Style

Karakus, Mutlu, and Alperhan Cebi. 2016. The role of microRNAs in autism. TAF Preventive Medicine Bulletin, 15 (6), 569-574. doi:10.5455/pmb.1-1463059546



Chicago Style

Karakus, Mutlu, and Alperhan Cebi. "The role of microRNAs in autism." TAF Preventive Medicine Bulletin 15 (2016), 569-574. doi:10.5455/pmb.1-1463059546



MLA (The Modern Language Association) Style

Karakus, Mutlu, and Alperhan Cebi. "The role of microRNAs in autism." TAF Preventive Medicine Bulletin 15.6 (2016), 569-574. Print. doi:10.5455/pmb.1-1463059546



APA (American Psychological Association) Style

Karakus, M. & Cebi, A. (2016) The role of microRNAs in autism. TAF Preventive Medicine Bulletin, 15 (6), 569-574. doi:10.5455/pmb.1-1463059546



AUTHOR LOGIN

REVIEWER LOGIN

Indexed In

EBSCOhost
ScopeMed
TÜBİTAK Turkish Medical Index
AkademikDizin
IndexScholar
Scopus
CAB Abstracts
Global Health Database
DOAJ
IndexCopernicus
Turk Medline (Pleksus)
Google Scholar




The articles in TAF Preventive Medicine Bulletin are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.